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Trapping, reflection, and fragmentation in a classical model of atom-lattice collisions

Alexander V. Plyukhin and Jeremy Schofield
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

~Received 18 September 2001; published 17 January 2002!

A classical one-dimensional model of the collision of an atom of massM with a cold, semi-infinite harmonic
lattice comprised of identical atoms of massm is considered. In the model, the interactions between the
incident atom~adatom! and the lattice are described in terms of a truncated parabolic potential by which the
adatom is harmonically bound to the lattice at short distances but evolves freely when its distance is larger than
a critical lengthRc . The dynamics of the adatom colliding with an infinitely cold lattice is studied as a function
of the initial velocity of the adatom. In order to determine whether the colliding atom is bound or reflected
from the lattice in the asymptotic time limit, ‘‘secondary’’ collision events in which the incident atom leaves
and reenters the interaction zone of the lattice are carefully considered. It is demonstrated that secondary
collisions anticipated to be important for heavy adatoms (m5m/M,1) also occur in the case of light adatoms
(m>1). It is shown that the neglect of secondary collisions leads to an underestimation of the lower energy
bound for adatom reflection of roughly 10% form close to 1. By generalizing the model to allow for the
breaking of lattice bonds, the phenomenon of collision-induced lattice fragmentation is investigated.

DOI: 10.1103/PhysRevE.65.026603 PACS number~s!: 45.10.2b, 45.50.Tn
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I. INTRODUCTION

The collision of an atom with polyatomic complexes
solid surfaces is an important and complicated proce
which generally must be described within a quantu
mechanical framework. Nevertheless, valuable insight i
the mechanism of energy transfer in such processes ca
gained from simplified classical models@1#. About forty
years ago Cabrera@2# and Zwanzig@3# investigated the pos
sibility of the trapping of an incident atom by a cold ha
monic lattice using a simple one-dimensional model. T
Cabrera-Zwanzig model, hereafter referred to as the
model, consists of a semi-infinite one-dimensional chain
classical particles~atoms! labeled i 51,2,3, . . . , beginning
from the terminal atom at the free end of the chain~see Fig.
1!. In the CZ model, the atomsi 52,3, . . . representing the
lattice have massm and are initially frozen in the equilibrium
positions,xi(0)5xi

05a( i 21), wherea.0 is the equilib-
rium bond length in the lattice. The corresponding init
velocitiesv i(0) and displacementsqi(0)5xi(0)2xi

0 of the
lattice atoms are taken to be zero. The terminal atomi 51
represents the incident particle~adatom! colliding with the
cold lattice. At t50, the adatom is assumed to be movi
towards the rest of the chain with positive initial veloci
v1(0) from a positionx1(0),0 displaced from its equilib-
rium position at the origin byq1(0)5x1(0). The relative
displacements of the atomsui5qi 112qi are all zero at
t50 except for that of the first link of the chain, which
initially stretched,u1(0)52q1(0).0. The adatom interact
with the terminal atom of the lattice (i 52) via a truncated
potentialU1 given by

U15H 1
2 k~x22x12a!2 if x22x1,Rc

1
2 k~Rc2a!2 otherwise,

~1!

wherek is the force constant andRc defines a cutoff length
for the truncation of the harmonic potential. In the C
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model,Rc is defined to be the initial length of the first lin
Rc5a1u1(0), sothat the adatom is just entering the inte
action zone att50. The interaction potential for the adato
with the lattice can, therefore, be written in terms of t
relative displacements of the two atoms as

U15H 1
2 ku1

2 if u1,u1~0!

1
2 ku1~0!2 otherwise.

~2!

All other pairs of nearest neighbors in the chain interact
harmonic potentials with force constantk. For this potential,
the evolution of the system occurs in such a way that if
relative displacementu1(te) between the adatom~atom 1!
and the terminal atom of the chain~atom 2! exceeds its initial
valueu1(0) at a timete.0, the lattice exerts no force on th
adatom that may then escape. On the other hand, if the in
ratio of kinetic and potential energies for the adatom

a5
Mv1

2~0!

ku1
2~0!

~3!

is less than a certain threshold valueac , one finds that
u1(t),u1(0) for all timest.0, which implies that the ada
tom remains bound to the lattice. In the Cabrera-Zwan
solution of the CZ model, it was assumed that the condit

u1~ te!5u1~0!, te.0 ~4!

FIG. 1. A schematic of the Cabrera-Zwanzig model.
©2002 The American Physical Society03-1
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guarantees the adatom will escape from the lattice and h
be reflected in the asymptotic time limit. Under this assum
tion, Eq. ~4! can be used to find the critical ratio of kinet
and potential energiesac for reflection. The dynamics of the
adatom displacementsu1(t) depends on the ratio of the la
tice and adatom massesm5m/M . For two special cases
corresponding tom51 andm52, it is possible to obtain an
analytical closed-form solution foru1(t) in terms of tabu-
lated functions. Using Eq.~4! as the condition to determin
the threshold for reflectionac , Zwanzig obtained@3# ac
'24.54 for the mass ratiom51, and a value about ten time
smaller for the mass ratiom52.

While the CZ model is clearly too simplified for a realist
description of the collision of an atom with a surface, t
model demonstrates the importance of multiphonon exc
tions for gas-surface processes. Besides providing a qua
tively correct description of the adatom trapping, the mo
also predicts@3,4# a much higher transfer of energy from th
light adatom to the lattice than what one would expect fr
the interaction of the adatom with a single surface ato
Although the energy transfer is overestimated in the o
dimensional CZ model, the enhanced energy transfer i
agreement with both experiment and more sophistica
three-dimensional models@1#. For a finite chain andM
→`, the model is relevant to scattering of molecular clust
from a hard surface, which is the topic of the extensive c
rent research@5#. In this context, the model has been cons
ered recently in Ref.@6#.

Since the early work of Cabrera and Zwanzig, the C
model has been revisited many times and generalized
multitude of ways to describe three-dimensional@1#, anhar-
monic @4#, finite @7#, and noncold lattices@8#. In addition,
more realistic potentials@1# for the adatom-lattice interac
tions have been considered, and mass ratiosm>1 have been
investigated by McCarroll and Ehrlich using an infinite s
ries expansion of Bessel functions@4#. The behavior of the
system for other mass ratios has also been discussed qu
tively by Zwanzig who noted that if the adatom is heav
than the chain atoms (m,1), the criterion for trapping ob-
tained using Eq.~4! may not be appropriate since the latti
vibrations induced by the adatom collision may lead to rec
lision and recapture events@3#.

The main goal of this paper is to show that actually E
~4! cannot be used alone to determine the conditions for a
tom reflection even when the mass of the adatom is equa
or less than the mass of lattice atoms,m>1. The inapplica-
bility of Eq. ~4! to unambiguously define an escape condit
can readily be seen from the fact that it does not involve
adatom velocityv1 . In the Zwanzig solution of the model,
is implicitly assumed that the adatom velocity is direct
away ~i.e., it has negative velocity! from the lattice at the
moment of the break of the first link. One may anticipate t
generally this assumption breaks down when the rupture
the link occurs by a mechanism in which the velocities of
adatom~atom 1! and the terminal atom of the lattice~atom 2!
are both positive andv2.v1 just before the break. We wil
show that such a mechanism is important for largem. Since
the velocity of the adatom after leaving the interaction zo
remains constant, such a break will be virtual in a sense
02660
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it does not lead to the escape of the adatom since it l
reenters the interaction region of the lattice and is trapp
Moreover, even when supplemented with the additional
quirement thatv1(te),0 at the moment of rupture, the dy
namics described Eq.~4! may still correspond to a virtua
break of the adatom-lattice bond since the adatom may m
too slowly after the bond is ruptured to escape the lattice
will be shown that such an eventuality arises, in particu
for the casesm51 andm52 considered by Zwanzig. Fo
m51, we demonstrate that the actual valueac is approxi-
mately 27.33, which is about 10% larger than the valueac*
'24.54 obtained by Zwanzig. Forac* ,a,ac , the adatom
moves out of the interaction zone after the first collision w
the lattice for a period of time until the vibrating lattice re
captures the adatom. There is only one such secondary
lision, after which the distance between the adatom and
outermost lattice atom never reaches the critical valueRc .

In the following section we consider the casem51 in
detail, while in Sec. III, the extension of the analysis of t
reflection dynamics is extended to arbitrary values ofm. In
Sec. IV, we discuss the behavior of the chain in which n
only the first, but all pairs of nearest neighbors interact
truncated parabolic potential. This model leads to the m
complicated scenario of atom-lattice collisions than in t
original CZ model and can be used to study collisio
induced fragmentation.

II. THE CASE µÄ1

The solution of the equations of motion for a harmon
chain can be written as linear combinations of initial d
placements and velocities with time-dependent coefficie
expressed in terms of the Bessel functionsJn(t). For a semi-
infinite chain of identical atoms, the displacements and
locities are given by

qi~ t !5 (
k51

` H qk~0!Wik~ t !1vk~0!E
0

t

dt8Wik~ t8!J , ~5!

v i~ t !5 (
k51

` H vk~0!Wik~ t !1qk~0!
d

dt
Wik~ t !J . ~6!

where

Wik~ t !5J2u i 2ku~2vt !1J2~ i 1k21!~2vt !, ~7!

andv25k/m. As this solution is less familiar than that fo
the infinite chain or for the chain with both ends fixed, w
outline its derivation in the Appendix. Note that these equ
tions hold for atoms located a finite distance from the fr
end of the chain.

Throughout this paper, we use dimensionless displa
mentsj i and velocitiesz i , which are normalized by the ini
tial coordinates of the adatom

j i~ t !5qi~ t !/uq1~0!u, z i~ t !5v i~ t !/v1~0!. ~8!

As functions of reduced timet52vt, j i(t) and z i(t) are
related by the equationj̇ i(t)5bz i(t), wherej̇ i(t) denotes
3-2
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TRAPPING, REFLECTION, AND FRAGMENTATION IN . . . PHYSICAL REVIEW E65 026603
the time derivative ofj i(t) and the parameterb is related to
the initial ratioa of the kinetic and the potential energies f
the adatom defined in Eq.~3!, by

b5
1

2v

v1~0!

uq1~0!u
5 1

2 Ama. ~9!

It follows from Eqs.~5! and ~6! that

j i~t!5 (
k51

` H jk~0!Wik~t!1bzk~0!E
0

t

dt8Wik~t8!J ,

~10!

z i~t!5 (
k51

` H zk~0!Wik~t!1b21jk~0!
d

dt
Wik~t!J .

~11!

The derivative and the integral of the functionWik(t) ap-
pearing in the above equations can be expressed in term
sums of Bessel functions noting that

E
0

t

dt8Wik~t8!52(
l 50

`

J2u i 2ku12l 11~t!

12(
l 50

`

J2~ i 1k1 l !21~t!, ~12!

dWik

dt
5 1

2 $J2u i 2ku21~t!2J2u i 2ku21~t!%

1 1
2 $J2~ i 1k!23~t!2J2~ i 1k!21~t!%. ~13!

In practical calculations, since the Bessel functions of la
index make increasingly small contributions to the sum
Eq. ~12!, the sum may be truncated at an indexNw deter-
mined by the desired level of numerical accuracy.

The initial conditions for the CZ model described in th
Introduction are

qi~0!5q1~0!d i1 , v i~0!5v1~0!d i1 , ~14!

with q1(0),0 andv1(0).0. The lattice with which the ada
tom ~atom 1! collides is assumed to lie on the right half
thex axis, and the initial conditions correspond to a situat
in which the adatom collides with the lattice from the left.
the dimensionless coordinates, the initial conditions assu
the form

jk~0!52d1k , zk~0!5d1k , ~15!

and hence from Eqs.~10! and ~11!, one obtains

j i~t!52J2~ i 21!~t !2J2i~t!1bE
0

t

dt@J2~ i 21!~t8!

1J2i~t8!#, ~16!

z i~t!5J2~ i 21!~t !1J2i~t!2
1

2b
@J2i 23~t!2J2i 11~t!#.

~17!
02660
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This solution of the dynamics of the system remains va
until the relative displacement

w1~t!5j2~t!2j1~t! ~18!

for the first link of the chain is greater than its initial value
1 at which point the link breaks.

Using Eq. ~16!, one finds that the first link breaks at
time t1.0 @that is, w1(t1)51# provided the parameterb
exceeds its critical valuebc* '2.4768. According to Eq.~9!,
this value corresponds toac* '24.54, in agreement with
Zwanzig’s result@3#. For reduced timest.t1 after the break
of the first link, the adatom no longer interacts with the la
tice and evolves freely according to

z1~t!5z1~t1!5const ~19!

j1~t!5j1~t1!1bz1~t1!~t2t1!. ~20!

The evolution of the lattice atoms after the rupture, on
other hand, is given by

z i 11~t!5 (
k51

` S zk11~t1!Wik~D1!

1b21jk11~t1!
d

dD1
Wik~D1! D , ~21!

j i 11~t!5 (
k51

` S jk11~t1!Wik~D1!

1bzk11~t1!E
0

D1
dDWik~D! D , ~22!

where i 51,2, . . . , D15t2t1 , andj i(t1),z i(t1) are given
by the functions~16! and ~17! at t5t1 . However, if one
tracks the evolution ofw1(t), one observes thatw1(t) first
increases thendecreasesto its initial valuew1(t2) at a re-
duced timet2 ~see curves 1–3 in Fig. 2! provided theb
parameter, determined by the initial kinetic energy of t
adatom, falls in the intervalbc* ,b,bc , with bc'2.617. At
time t2 , the adatom reenters the region of interaction w
the lattice and is once again bound by the chain. The dyn
ics of the chain after the adatom reenters the region of in
action with the lattice (t.t2), is described by

z i~t!5 (
k51

` S zk~t2!1b21jk~t2!
d

dD2
DWik~D2!, ~23!

j i~t!5 (
k51

` S jk~t2!Wik~D2!1bzk~t2!E
0

D2
dDWik~D! D ,

~24!

whereD25t2t2 , andz i(t2),j i(t2) are the functions~21!
and ~22! at t5t2 . Equations~23! and ~24! give a relative
displacementw1(t),1 for all t.t2 , which implies the ada-
tom leaves the interaction zone only once. Rupture event
the adatom-lattice bond leading to the reflection of the a
tom in the asymptotic time limit occur forb.bc , where the
3-3
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ALEXANDER V. PLYUKHIN AND JEREMY SCHOFIELD PHYSICAL REVIEW E65 026603
kinetic energy of the adatom is still large enough after o
oscillation of the chain that the lattice is unable to recapt
the adatom~see curves 4 and 5 in Fig. 2!. Thus, one can
conclude that the adatom is reflected by the lattice only
b.bc , which gives a critical valueac'27.395, roughly
10% larger than the valueac* '24.54 predicted by Zwanzig
@3#.

If b.bc and the adatom has left the scene of interacti
the outermost lattice atom (i 52) becomes the terminal atom
for the rest of the chain. If one now assumes that at this s
atom 2 begins to interact with atom 3 via a truncated pa
bolic potential, the new terminal atom can escape the lat
provided it gains enough energy from the collision of t
adatom with the lattice. For this model, we find that the fi
link of the remaining chain, between atoms 2 and 3, exp
ences a ‘‘virtual’’ break for a critical value ofb'3.94, while
bond-breaking events leading to the final escape of ato
occurs whenb'4.35. This process can be continued to e
amine how energetic adatom-lattice collisions lead to
quential fragmentation of the lattice. In Sec. IV, we exam
a slightly different model of surface fragmentation in whi
all lattice atoms interact via a truncated parabolic potent
thus allowing bond-breaking events to occur between
two lattice atoms at all times.

III. ARBITRARY MASS RATIOS

To generalize the previous discussion of adatom-lat
collision dynamics to an arbitrary mass ratiom5m/M , it is
instructive to consider the set of integral-differential equ
tions for atom positions, which have the form of a gener
ized Langevin equation@9,10#. For the adatom, the equatio
has the form

q̈1~ t !52v1
2q1~ t !1v1

2E
0

t

dt8K~ t2t8!q1~ t8!1F1~ t !,

FIG. 2. Relative displacementw15j22j1 between the adatom
and the outermost lattice atom after the adatom leaves the inte
tion zonew1,1. Curves 1, 2, and 3 correspond to situations wh
the adatom is recaptured, while curves 4 and 5 correspond to
tom reflection.
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where v1
25k/M , the memory functionK(t) is given by

K(t)52J2(2vt)/t, and the ‘‘stochastic’’ forceF1(t) is a
linear function of initial coordinates and momenta of t
lattice atoms (i 52,3, . . . ). Theequations for the lattice at
oms are given by

q̈i~ t !52v2qi~ t !2v2~qi2qi 21!

1v2E
0

t

dt8K~ t2t8!qi~ t8!1Fi~ t !,

where the forceFi(t) is a linear function of initial coordi-
nates and momenta of atomsi 11, i 12, . . . For theinitial
conditions of the CZ model@see Eq.~14!#, the fluctuating
forces Fi vanish. Then introducing the reduced timet
52vt, the above equations can be written as

q̈1~t!52
m

4
q1~t!1

m

4 E
0

t

dt8M ~t2t8!q1~t8!, ~25!

for the adatom, and

q̈i~t!52
1

2
qi~t!1

1

4
qi 211

1

4 E0

t

dt8M ~t2t8!qi~t8!,

~26!

for the lattice atoms,i 52,3, . . . Here and below, the nota
tion Ḃ(t) andB̈(t) denote the first and second derivatives
an arbitrary variableB(t) with respect tot. The memory
function M (t) in these equations takes the form

M ~t!5
2

t
J2~t!5 1

2 @J1~t!1J3~t!#, ~27!

which has the Laplace transform,M̃ (s)5s22sAs211
11/2.

Using the method of Laplace transformation, one can
tain the solution of Eqs.~25! and ~26! in the convenient
iterative form

q1~t!5A~t!q1~0!1H E
0

t

A~t8!dt8J q̇1~0!, ~28!

qi~t!5E
0

t

M ~t2t8!qi 21~t8!dt8, i>2, ~29!

where the functionA(t) has the Laplace transform

Ã~s!5
2

~22m!s1mAs211
. ~30!

Equations~28! and ~29! can be expressed in terms of th
dimensionless displacements and velocities as

j1~t!52A~t!1bE
0

t

A~t8!dt8, ~31!

z1~t!5A~t!2b21Ȧ~t!, ~32!

c-
e
a-
3-4
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TRAPPING, REFLECTION, AND FRAGMENTATION IN . . . PHYSICAL REVIEW E65 026603
for the adatom, and

j i~t!5E
0

t

M ~t2t8!j i 21~t8!dt8, ~33!

z i~t!5E
0

t

M ~t2t8!z i 21~t8!dt82
1

b
d i ,2M ~t! ~34!

for the lattice atoms,i>2.
There are two cases when the inverse transform ofÃ(s)

in Eq. ~30! has a closed form. Form51, one finds that
A(t)52J1(t)/t5J0(t)1J2(t) and Eqs.~28! and ~29! co-
incide with the general solution obtained previously in E
~5! and ~6! for the homogeneous chain. The second sim
case is whenm52, which yields the concise resultA(t)
5J0(t).

To obtainA(t) for mass ratiosm other than 1 and 2, one
notes thatÃ(s) is a two-valued function with branch point
at s56 i . The corresponding Riemann surface, consisting
two sheets, can be constructed making a cut along the im
nary axis between the branch points. To obtain the inve
Laplace transform ofÃ(s), one must choose the first she
on which the functionAs211 is positive whens is real and
positive since integration on the second sheet leads to a f
tion A(t) that behaves unphysically either in the limitt
50, or whent→` ~or in both limits!. If m,2, the only
singular points of the functionÃ(s) on the first sheet are a
the branch points6 i . The integration path of the invers
Laplace transform for this case can be transformed int
closed curve around the cut. For this path, one obtains
following integral representation forA(t) for m,2,

A~t!5
1

p

m

m21 E0

1

dy cos~yt!
A12y2

g2y2 , ~35!

whereg5(m2/4)/(m21). If m.2, on the other hand, ther
are also contributions toA(t) from two simple poles lying
on the imaginary axis ats56 iAg, and one gets

A~t!5
1

p

m

m21 E0

1

dy cos~yt!
A12y2

g2y2 1
m22

m21
cos~Agt!.

~36!

Equations~31!–~36! give a complete description of th
system dynamics until the break of the first link of the cha
at timet1 . After the chain breaks, the dynamics is describ
by Eqs.~19!–~22! that, in turn, hold until the adatom is re
captured by the lattice. As in the special casem51, one finds
that bc* Þbc for any mass ratiom, wherebc* andbc denote
the critical values of the parameterb at which the first link
breaks and the adatom is asymptotically reflected, res
tively. For a light adatom withm.5 at b5bc* , the adatom
velocity at the moment of bond rupture is positive and he
directed toward the lattice, implying that the adatom is
captured by the lattice. Such recapture events persist fom
values as large as 40, and presumably occur for largem.
However, since the difference betweenbc* andbc becomes
02660
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increasingly small with largem, it is numerically difficult to
detect recapture events for very light adatoms. For very li
adatoms,bc* 'bc , and hence the original CZ criterion t
solve for the critical value ofb for adatom reflection is ap
proximately correct. On the other hand, for a relatively hea
adatom (m,5), the situation is qualitatively similar to tha
described in the preceding section form51: At the moment
of rupture, the adatom is moving away from the lattice f
b5bc* with a small velocity and is subsequently recaptur
by the vibrating lattice.

IV. GENERALIZED MODEL

One rather unexpected feature of the semi-infinite, hom
geneous chain dynamics after the adatom collision is that
maximal stretching of the first link of the chain may be le
than that for the subsequent links~see Fig. 3!. Due to this
surprising observation, first noted in Ref.@4#, it is interesting
to consider a generalization of the CZ model in whichall
nearest neighbor atoms in the lattice interact via the sa
truncated potential. Since the maximal bond stretching
duced by the adatom collision with the lattice does not oc
at the first link, one may anticipate that the result of an a
tom collision in the generalized CZ~GCZ! model will not be
a reflection but rather a fragmentation of the chain. Restr
ing ourself to the caseM5m, we demonstrate in this sectio
that the rupture events in the inner chain are virtual for lo
energy adatom collisions, yielding short-lived chain fra
ments that are recaptured by the lattice. As a result of
recapture events, low-energy adatom-lattice collisions re
in either trapping or reflection of the adatom without fra
mentation of the chain. However, as the adatom energy
creases, clusters of atoms may escape the lattice in add
to the reflected adatom.

To explore the possibility of the lattice fragmentation
the GCZ model, one also needs the general solution of eq

FIG. 3. Relative displacementsw i5j i 112j i of the first (w1),
third (w3), and fifth (w5) links of the chain forb51.6941. Positive
and negative values ofw i correspond to stretching and compressi
of the link, respectively.
3-5
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ALEXANDER V. PLYUKHIN AND JEREMY SCHOFIELD PHYSICAL REVIEW E65 026603
tions of motion for a free cluster in addition to the solutio
~5! and~6! for the semi-infinite chain. In the Appendix, it i
shown that the displacements of an atom in a free clu
obey

qi~ t !5qc~0!1vc~0!t

1 (
k51

N S qk~0!Vik~ t !1vk~0!E
0

t

dt8Vik~ t8! D ,

~37!

where N is the number of atom in a cluster,qc(0)
5N21S iqi(0) and vc(0)5q̇c(0) are the initial coordinate
and the velocity of the center of mass of the cluster. T
function Vik(t) in Eq. ~37! is given by

Vik~t!5
1

N (
j 51

N21

@cos$2~ i 2k!yj%cos~t sinyj !

2cos$2~ i 1k21!yj%cos~t sinyj !#,

wheret52vt, andyj5p j /(2N). In the limit of large clus-
ters,Vik(t) reduces to the corresponding functionWik(t) for
the semi-infinite chain given in Eq.~7!. The dimensionless
displacementsj i and velocitiesz i for atoms in the cluster
obey

z i~t!5 (
k51

N S zk~0!1b21jk~0!
d

dt DVik~t!1zc~0!,

~38!

j i~t!5 (
k51

N S jk~0!1bzk~0!E
0

t

dt DVik~t!1jc~0!

1btzc~0!, ~39!

wherezc(0)5N21( iz i(0) andjc(0)5N21( ij i(0).
The initial dynamics of the chain~before a break in the

chain! in the GCZ model is described by the same expr
sions~16! and~17! as for the original CZ model. Using thes
equations, one finds that the minimalb for the chain rupture
is b151.6941..., which corresponds to the break of thefifth
link at the reduced timet5t1516.89,..., at which time

w5~t1!5j6~t1!2j5~t1!51, ~40!

w i~t!,1, iÞ5,t<t1. ~41!

At time t1 , the original chain decomposes into a clus
of five atoms and a semi-infinite lattice. Fort.t1 , the clus-
ter evolves according to Eqs.~38! and~39! from the coordi-
nates and velocities valuesj i(t1) andz i(t1),

j i~t!5jc~t1!1bD1zc~t1!1 (
k51

5 S jk~t1!Vik~D1!

1bzk~t1!E
0

D1
dDVik~D! D , ~42!
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z i~t!5 (
k51

5 S zk~t1!1b21jk~t1!
d

dD1
DVik~D1!1zc~t1!,

~43!

whereD15t2t1 , and the time dependence of the atoms
the remaining lattice is given by

j i 15~t!5 (
k51

` S jk15~t1!Wik~D1!

1bzk15~t1!E
0

D1
dDWik~D! D , ~44!

z i 15~t!5 (
k51

` S zk15~t1!Wik~D1!

1b21jk15~t1!
d

dD1
Wik~D1! D , ~45!

wherei 51,2, . . .
Equipped with these results, it is straightforward to sh

that the bond rupture occurring at the fifth link forb1,b
,b2 ~where b251.71...! are virtual in the sense that th
cluster leaves the interaction region of the lattice for a sh
time and is then captured by the lattice at timet2 . For t
.t2 , the evolution of the chain is once again described
Eqs.~23! and ~24!, and the lattice is stable.

Similar analysis shows that neither the reflection of t
adatom nor the fragmentation of the lattice occurs forb less
than the threshold valuebc51.86 . . . . Ifb is slightly larger
than bc , the chain first experiences a virtual break at t
third link, leading to a three-atom cluster, which is later r
captured by the lattice. At subsequent times, the chain
unstable and quickly ruptures at the first link. This break
not virtual and leads to the final reflection of the adatom. T
remaining lattice is then stable for all time and does n
fragment. This behavior is reminiscent of that observed
the tunneling mechanism of chain breaking@11# according to
which bond rupture results from two subsequent proces
with different time scales, the fast vitual disappearance
one bond followed by the slow collective motion of th
chain.

As b increases further, the evolution of the system b
comes more complicated and fragmentation of the lattice
possible. To illustrate this point, consider the chronology
the chain decay forb52.47 for which the chain first break
at the second link. For this value ofb, the two-atom cluster
is not recaptured by the lattice. The remainder of the latt
vibrates after the cluster breaks free for a reduced time in
val dt'15, after which the chain experiences a virtual ru
ture at the sixth-link on the remaining chain, forming a s
atom cluster, which is quickly recaptured. After the cluster
recaptured, the lattice is still unstable and finally fragme
at the fifth link, leading to the ‘‘evaporation’’ of a five-atom
cluster from the lattice, which is henceforth stable.
3-6
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V. CONCLUDING REMARKS

In this paper, it has been demonstrated that the Cabr
Zwanzig model of the collision of an atom with a cold lattic
has much richer behavior than previously reported. In p
ticular, we have shown that secondary collisions in which
adatom reenters the interaction zone of the lattice afte
virtual break are important over a wide range of mass ra
m. Due to the presence of secondary adatom-lattice collsi
the adatom reflection threshold energy cannot be comp
based on a single bond-breaking event. It was demonstr
that threshold energies calculated in this fashion provide o
a lower bound for the adatom to leave the interaction z
and do not guarantee that the adatom will be reflected by
lattice in the asymptotic time limit.

In addition, collision-induced fragmentation was cons
ered by generalizing the CZ model to allow for the break
of all lattice bonds. For the generalized CZ model~GCZ!, it
was shown that the collision of a low energy adatom with
cold lattice produces short-lived clusters, which are quic
recaptured by the vibrating lattice. It was demonstrated
the first fragmentation event surviving in the long time lim
corresponds to the reflection of the adatom in spite of
production of virtual clusters at early times. Although t
asymptotic phenomenology of the GCZ model is similar
that of the CZ model for low energy collisions, the ener
threshold for adatom reflection for the GCZ model w
found to be of approximately half its value in the simpl
model, demonstrating the importance of the formation of v
tual clusters in the energy transfer process. As the energ
the adatom collision with the lattice increases, the evolut
of the system becomes complicated by the evaporation
clusters, resulting in real fragmentation of the lattice.

It should be emphasized that the present considerat
are neither general nor complete. This study focused only
the situation in which the masses of the atoms composing
lattice are the same and the spring constants appearing i
~possibly truncated! parabolic potentials are all equal. I
principle, it is possible to consider the collision of an adato
with nonhomogeneous lattices along the lines elabora
here, but the mathematical solution of the equations of m
tion of the nonhomogeneous system becomes cumbers
Furthermore, one may anticipate that the phenomenolog
the collisions of an atom with a nonhomogeneous latt
would be quite similar to that reported here. In particul
one expects the mechanism of secondary collisions to
crease the minimum threshold energy for adatom reflect

The present study demonstrates the importance of a c
ful consideration of the full dynamics of the adatom-latti
system after the initial bond-breaking event. The ene
transfer from the adatom to the surviving lattice is stron
influenced by the formation of virtual clusters, which a
recaptured by the ‘‘surface’’ in secondary collisions. Su
behavior is likely to be important in more realistic models
the collision process of an atom with a surface, which
based on other potentials of interaction, other initial con
tions, such as those appropriate for studying thermal des
tion, or which involve multidimensional lattice structures f
the surface.
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APPENDIX

In this appendix, the solution of the equations of motio
for a finite free harmonic chain and for a semi-infinite cha
are presented. The Hamiltonian of the finite harmonic ch
of N atoms with both ends free

H5(
i 51

N pi
2

2m
1 (

i 51

N21
k

2
~qi2qi 11!2

can be reduced to the diagonal form

H5
1

2 (
j 50

N21

$Pj
21v j

2Qj
2%,

by means of the normal mode transformations

qi5
1

Am
(
j 50

N21

Ai j Qj , pi5Am(
j 50

N21

Ai j Pj ,

with

Ai j 5S e j

N D 1/2

cosH p j
2~N2 i !11

2N J ,

wheree j takes the value of 1 ifj 50 and 2 otherwise. The
frequencies of the normal modes are given by

v j52v sinS p j

2ND ,

wherev5Ak/m. The normal modes evolve as

Pj~ t !5Pj~0!cos~v j t !2v jQj~0!sin~v j t !,

Qj~ t !5Qj~0!cos~v j t !1v j
21Pj~0!sin~v j t !,

for j Þ0, and

P0~ t !5P0~0!5const

Q0~ t !5Q0~0!1P0~0!t

for the modej 50. The momentum of the atomi can then be
written as

pi~ t !5Am(
j 50

N21

Ai j $Pj~0!cos~v j t !2v jQj~0!sin~v j t !%

1AmAi0P0 .

Since theAi j satisfy orthogonality conditions with respect
both indices, one can expressPj (0) andQj (0) in the above
equation in terms ofpi(0) andqi(0). Theresulting equation
has the form
3-7
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pi~ t !5
1

N (
k51

N

pk~0!1 (
k51

N S pk~0!1mqk~0!
d

dtDVik~ t !,

where

Vik~ t !5 (
j 51

N21

Ai j Ak j cos~v j t !.

After simple trigonometric manipulations, the functio
Vik(t) can be written as

Vik~ t !5
1

N (
j 51

N21

@cos$2~ i 2k!yj%cos~2vt sinyj !

2cos$2~ i 1k21!yj%cos~2vt sinyj !#,
02660
whereyj5p j /(2N).
The case of the semi-infinite chain is recovered in

limit N→` by converting the sum to an integral

Vik~ t !5
2

p E
0

p/2

dy@cos~2yu i 2ku!cos~2vt siny!

1cos$2y~ i 1k21!%cos~2vt siny!#,

which is just the integral representation for the sum of t
Bessel functions

Vik~ t !5J2u i 2ku~2vt !1J2~ i 1k21!~2vt !

The solutions for displacements can be obtained in an an
gous fashion.
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